Entry #A3694

Circuit Cellar / Atmel AVR Contest

June 30th 2004

Entry #A3694: AVRcam

Abstract
A low-cost image processing engine capable of visually tracking eight objects of eight different user-defined colors, at 27 frames per second...

…Hobbyist robotics just got a lot more interesting

Overview

The AVRcam is a stand-alone image-processing engine based on the Atmel ATmega8 microcontroller. This engine is capable of tracking eight objects of eight different user-defined colors, at 27 frames per second. The system provides a user-interface, through a well-defined protocol, over a standard serial port. The user-interface provides the following image information to the user in real-time:

(number of currently tracked objects

(color of each tracked object

(center point of each tracked object

(bounding box of each tracked object

The system also allows the user to take snapshots of its current field of view, allowing the user to better understand how the AVRcam perceives its environment. The AVRcam is shown in Photo 1.

[image: image1.jpg]
Photo 1: The AVRcam Version 1.0

A PC-based application (AVRcamVIEW) was also developed to provide a platform for demonstrating and configuring the AVRcam. This application interfaces to the AVRcam through the standard RS232 port on any PC. This application allows the user to take snapshots with the AVRcam, and view them or save them for later use. Once a snapshot is taken, the user can quickly set up the color map to be used by the AVRcam, by simply clicking on the colors of interest. AVRcamVIEW will automatically build and download a color map to the AVRcam for to be used during object tracking. Finally, AVRcamVIEW can display the real-time tracking results to the user. An example screenshot is shown in Photo 2.

The AVRcam was developed for the purpose of enabling mobile robots to perceive their environment in a small form-factor, low-power, high-capability package. A typical embedded configuration would have the AVRcam connected to another microcontroller, which accesses the AVRcam through its serial user-interface. This type of system is especially useful when the environment in which a robot operates can be defined by the colors around it. An example of this is the RoboCup robot soccer competition held each year. The AVRcam system can be easily interfaced to a robot to provide high-level, real-time information about the robot’s environment.

[image: image2.png]
Photo 2: The AVRcamVIEW PC Application Tracking Three Objects Simultaneously

System Block Diagram

The complete AVRcam system is shown in Figure 1. The system consists of an Omnivision OV6620 CMOS color image sensor, an ATmega8 microcontroller, and a handful of support components. The key to allowing the system to execute at such high frame rates is to provide inherent synchronization between the image sensor and the ATmega8 by clocking them both with the same crystal. Thus, synchronization with the pixel data is only required at the start of each line. This greatly reduces the amount of overhead when acquiring each pixel.

Figure 1: AVRcam System Block Diagram

Code Snippet

The following code snippet shows the FrameMgr_findConnectedness routine which takes run-length encoded lines of pixel samples, and builds connected regions between adjacent lines of samples. This data is stored in a tracked-object table, which is sent out the serial port after each frame is acquired.

/***

Function Name: FrameMgr_findConnectedness

Function Description: This function is responsible for

finding the connectedness between two particular run-

length encoded lines of pixel data. It updates the

trackingTable as needed.

Inputs: none

Outputs: none

***/

static void FrameMgr_findConnectedness(void)

{

 trackedColor_t currColor;

 unsigned char *pCurrLineColorInfo = currentLineBuffer;

 unsigned char *pTrackedObjectData;

 register unsigned char currPixelRunStart=0;

 register unsigned char currPixelRunFinish=0;

 register unsigned char lastLineXStart=0;

 register unsigned char lastLineXFinish=0;

 register unsigned char runLength=1;

 unsigned char i;

 bool_t colorConnected;

 do

 {

 /* grab both the current color and the number of pixels

 in the run...remember, pixels start at 1, not 0! */

 colorConnected = FALSE;

 currColor = *pCurrLineColorInfo++;

 currPixelRunStart += runLength;

 runLength = *pCurrLineColorInfo++;

 currPixelRunFinish += runLength;

 if (currColor != notTracked)

 {

 /* this run contains a color we care about, so

 either it will begin a new tracked object, or it

 is connected to a currently tracked object...

 compare it with each object in the tracking

 table */

 for (i=0; i<numCurrTrackedObjects; i++)

 {

 /* The pTrackedObject pointer is used to move around within each

 trackedObject_t structure to access and update its fields. This

 is done instead of accessing each element in the structures through

 the more traditional way (using the 'i' index to access a structure

 in the trackingTable, followed by accessing the particular field

 of interest) for efficiency reasons. */

 pTrackedObjectData = (unsigned char *)&pCurrentTrackedObjectTable[i];

 if (currColor == *pTrackedObjectData)

 {

 /* found a color match...check to see if there is

 connectedness */

 pTrackedObjectData++; /* move the pointer to the lastLineX/Y data of the structure*/

 lastLineXStart = *pTrackedObjectData;

 lastLineXFinish = *(pTrackedObjectData+1);

 /* Check for the 5 following types of line connectedness:

 | |

 | |

 ------------------------- */

 if (((currPixelRunStart >= lastLineXStart) &&

 (currPixelRunStart <= lastLineXFinish)) ||

 /* ---------------------

 | |

 | |

 OR

 | |

 | |

 --------- */

 ((currPixelRunFinish >= lastLineXStart) &&

 (currPixelRunFinish <= lastLineXFinish)) ||

 /* -------------------------------

 | |

 | |

 OR

 | |

 | |

 ------------------------------- */

 ((currPixelRunStart <= lastLineXStart) &&

 (currPixelRunFinish >= lastLineXFinish)))

 {

 /* THERE IS CONNECTEDNESS...update the lastLineXStart and lastLineXFinish

 data pointed to by pTrackedObjectData */

 *pTrackedObjectData++ = currPixelRunStart;

 *pTrackedObjectData++ = currPixelRunFinish;

 /* check if the bounding box needs to be updated */

 if (*pTrackedObjectData > currPixelRunStart)

 {

 /* need to update the bounding box for the upper left point to

 enclose this new left-most point...we never have to update the

 upper left Y point, since each scan line we process moves from

 top to bottom */

 *pTrackedObjectData = currPixelRunStart;

 }

 pTrackedObjectData += 2; /* move the pointer up to the lowerRight data */

 if (*pTrackedObjectData < currPixelRunFinish)

 {

 /* need to update the bounding box for the lower right X point to

 enclose this new right-most point */

 *pTrackedObjectData = currPixelRunFinish;

 }

 /* the lower right 'y' point always gets updated when connectedness is found */

 *(pTrackedObjectData+1) = trackedLineCount;

 /* set a flag indicating that that color run is part of another

 object and thus doesn't need to be added as a new entry into the

 tracking table */

 colorConnected = TRUE;

 break;

 }

 }

 }

 if (colorConnected == FALSE)

 {

 /* a new entry needs to be made to the tracking table, since we have

 a run-length with a color, and it isn't connected to anything...but we

 can only do this if there is space left in the trackedObject table */

 if (numCurrTrackedObjects < MAX_TRACKED_OBJECTS)

 {

 /* space is available...add the object */

 pTrackedObjectData = (unsigned char *)&pCurrentTrackedObjectTable[numCurrTrackedObjects];

 /* now that we have a pointer to the tracked object to be updated, update all

 the fields */

 pTrackedObjectData++ = currColor; / color */

 pTrackedObjectData++ = currPixelRunStart; / lastLineXStart */

 pTrackedObjectData++ = currPixelRunFinish; / lastLineXFinish */

 pTrackedObjectData++ = currPixelRunStart; / x_upperLeft */

 pTrackedObjectData++ = trackedLineCount; / y_upperLeft */

 pTrackedObjectData++ = currPixelRunFinish; / x_lowerRight */

 pTrackedObjectData++ = trackedLineCount; / y_lowerRight */

 /* we'll calculate the center point for each tracked object when

 the frame is done, instead of wasting the precious clock cycles doing

 it now */

 numCurrTrackedObjects++;

 }

 }

 }

 } while(currPixelRunFinish < ACTUAL_NUM_PIXELS_IN_A_LINE);

}

AVRcam v1.0 Schematic

[image: image3.png]
5 Volts

TrackedObjectTable stored in RAM

ColorMap stored in EEPROM

Debug LED

In-Circuit Programming Header

PCLK

HREF

Ext Clock

VSYNC

16 MHz crystal

UV7-UV4

pixel bus

Y7-Y4

pixel bus

RS232

Level

Converter

(optional)

ATmega8

PC7-PC4

PB7-PC4 UART tx

 UART rx

Ext INT0

Ext INT1

T1 16-bit

Counter

TWI / I2C

O

V

6

6

2

0

PAGE
6
Entry #A3694

